He retired last month after 28 years traveling the world to source the very best gemstones for his family’s jewelry business, Oscar Heyman.
What Diamonds Tell Us About Deep Earth
The mineral, which is an allotrope of carbon, recently made the cover of “Science” magazine. Here’s why.

Diamonds--or rather, one very large diamond from the Lulo mine in Angola--recently made the cover of “Science” magazine thanks to breakthrough research led by a gentleman who is a postdoctoral research fellow at the Gemological Institute of America specializing in diamond geology.
Evan Smith led a team of researchers who studied inclusions in more than 50 Type IIa diamonds to uncover clues about Earth’s geology and back up a theory that geologists have been working with for more than a decade.
So, what was the theory and why is it important?
I recently had the chance to chat with the lead researcher, who started his postdoctoral work at the GIA in 2015, to find out.
First, though, a little bit of background on Mr. Smith so you can better understand how he came to be studying diamonds at the GIA.
He grew up in Canada and holds a bachelor’s degree in applied science and a master’s in engineering from Queen’s University in Kingston, Ontario.
One day when he was an undergraduate, one of his classes had a guest speaker who gave a lecture on “the wonder behind diamonds,” and what they tell us about the Earth.
After that, Smith said, he was hooked.
“You start to understand more and more the things that diamonds can tell us,” he said. “They’re really unique minerals. No other mineral really has this ability to document the Earth and play the role of such a storyteller.”
Smith earned his master’s at Queen’s and then went on to get his Ph.D. in geology from the University of British Columbia.
Today, he’s at the GIA in New York where his post-doctoral work focuses on systematically characterizing the inclusions seen in rare types of diamonds to help us better understand how diamonds form and what they mean for the evolution of the planet.
The article recently published in “Science” magazine detailed a study that Smith, along with other scientists including the GIA’s Wuyi Wang, did on the unique properties of Type IIa diamonds, stones that are similar to well-known diamonds like the Cullinan, the Koh-i-Noor and the more recently discovered 812.77-carat “Constellation.” The purpose behind the research was to better understand Earth’s mantle, which is beneath tectonic plates and, as such, largely inaccessible for scientific observation.
As you may already know, Type IIa diamonds
Smith also pointed out something that I had never thought about before but should have been obvious after years of writing articles about diamonds like this--that the big rough diamonds that make headlines tend to be irregular in shape, not a nice, symmetrical octahedron like so many smaller stones. They often have a surface that’s rounded and somewhat dissolved, “almost like a lollipop after someone’s been after it for a while,” Smith said.

The fact that these big, beautiful diamonds are different has not escaped the attention of earth scientists, who have wondered for years if they form in a different way, in a different part of Earth’s mantle, and thus tell us something different about our planet.
In order to conduct the study, though, Smith and the other researchers did not, and could not, limit themselves to these kind of outsized and exceedingly rare diamonds.
Instead, they studied Type IIa diamonds of all sizes that came through the GIA lab, including some that were smaller than a carat.
Particularly helpful in the study were chunks of diamonds that were cut off larger stones and picked up from the cutting room floor, so to speak.
These offcuts--many of which came from Letšeng in Lesotho, the same mine that produced the rough diamond cut to create the incredible 118.78-carat “Graff Venus”--were key to the study because the researchers could polish them to get a better look at the inclusions, something that they, obviously, could not do with the other diamonds.
“If we didn’t have the off-cuts,” Smith noted, “we might not be having this conversation.”
What Smith and the other researchers found after examining 52 Type IIa stones (and one Type Iab) is that in nearly three-quarters of the diamonds (38 out of 53), the inclusions weren’t, as long believed, graphite but metallic, a solidified mixture of iron, nickel, carbon and sulfur.
Smith said that this verifies what geologists have been theorizing for 10 or more years: that the Earth’s deeper mantle environment has a “light peppering” (up to 1 percent) of metallic iron.
This understanding is important because it changes the way scientists think about how different elements, like carbon, nitrogen and sulfur, are distributed. It also has broad implications for understanding the behavior of the deep Earth, including the recycling of surface rocks into the convecting mantle.
You can read a synopsis of Smith’s article on the “Science” website, though the full article is not available online for free to everyone.
In addition to Smith and Wang, the research team included Steven Shirey, Emma Bullock and Jianhua Wang from the Carnegie Institution for Sciences; Fabrizio Nestola from the Department of Geosciences at the University of Padova; and Stephen Richardson from the Department of Geological Sciences at the University of Cape Town in South Africa.
The Latest

The charm necklace features six nautical charms of shells and coral that founder Christina Puchi collected on Florida’s beaches.

The organization elected its youngest vice president as it looks to draw in fresh talent.

The Seymour & Evelyn Holtzman Bench Scholarship from Jewelers of America returns for a second year.

Campbell joins the company as vice president of business development while Liebler is the new vice president of operations.


The medals feature a split-texture design highlighting the Games’ first time being hosted by two cities and the athletes’ journeys.

Sponsored by The INSTORE Jewelry Show 2025

The countdown is on for the JCK Las Vegas Show and JA is pulling out all the stops.

Globally, travel and transportation brands reigned, while in the U.S., alcoholic beverage companies and a lingerie brand took the top spots.

The Brooklyn-based jewelry designer is remembered as a true artist and a rare talent.

Production at the mine in Canada’s Northwest Territories topped 1 million carats in Q2, the third consecutive quarter of growth.

A new slate of Learning Workshops will take place in Oklahoma, Mississippi, and Georgia.

The middle class is changing its approach to buying jewelry and affordable luxury goods, the NRF said.

It marks the third consecutive quarter of growth for Cartier, Van Cleef & Arpels, Buccellati, and Vhernier.

The reseller’s market trends report, based on its sales data, also shows exactly how much Rolex prices have jumped since 2010.

The auction house will be hosting a retrospective paying tribute to jeweler Jean Dinh Van and his company’s 60th anniversary.

Jake Duneier and Danielle Duneier-Goldberg have stepped into the roles of CEO and president, respectively.

The “Impermanence” collection contemplates nature through the Japanese art of Ikebana (flower arranging) and philosophy of wabi-sabi.

The Texas-based jewelry retailer has set up shop in Tennessee and Arizona.

Eric Ford will step into the role, bringing with him decades of experience.

In addition to improved capabilities, the acquisition will allow the jeweler to offer support to other independent jewelers.

The “Celestial Blue” capsule collection campaign features Olympian Kateryna Sadurska.

The seasonal store, located in Mykonos, Greece, offers exclusive events, personal styling, and curated experiences.

The New England jeweler is hosting a bridal event for the month of August.

The trade-only event will host its debut fair in the Emerald City later this month.

Its sessions will focus on inventory strategies, staff performance, retention and acquisition, emerging market trends, and more.

For its 10th anniversary, Miseno designed the “Arco” earrings based on the Arco Felice, an arch conceptualized in A.D. 95 in Miseno, Italy.