Editors

Going Deep: What the GIA Just Learned About Blue Diamonds

EditorsAug 06, 2018

Going Deep: What the GIA Just Learned About Blue Diamonds

They don’t form in the same layer of the Earth as other diamonds.

20180806_Blue-diamond-header.jpg
GIA research scientist Evan Smith just completed a two-year research study on blue diamonds with inclusions that sheds lights on how and where these rare stones form. This is one of the gems examined as part of the study; it is 3.81 carats and 1.26 cm long. (Photo credit: Robison McMurtry © GIA)
It’s widely known that blue diamonds are among the rarest of gemstones.

But scientists had no idea where exactly in the earth they formed or how they picked up the boron that makes them that color—until now.

Evan Smith, a research scientist at the Gemological Institute of America, was the lead author of an article that landed on the cover of the latest edition of the scientific journal Nature.

The article details the findings of a study he and other GIA researchers recently completed on inclusions in blue diamonds.

For this study, Smith examined 46 stones submitted to the GIA for grading over a two-year period.

“People”—meaning earth scientists, who look to diamonds to help draw hypotheses about Earth’s history—“have wanted to study these boron-bearing diamonds for years, but it’s difficult because they are rare and they’re also mostly inclusion-free,” he said. 

“So if you do manage to borrow or purchase some of these blue diamonds, it’s difficult to learn much because they do not have inclusions.

(An article on blue diamonds in the Winter 1998 issue of Gems & Gemology authored by John King, et al states that in a study of more than 400 blue diamonds, researchers examined a subset of 62 stones specifically for inclusions. Of those, only about 15 had solid inclusions.)

Being at GIA, though, gave Smith access to a steady stream of boron-bearing diamonds with inclusions.

He said the graders would pick out stones that fit the profile and let him “borrow” them for a few hours. He would then use a non-destructive technique called Raman spectroscopy to identify what mineral was trapped inside the inclusions.

Over time, Smith assembled a list of inclusions that allowed him to draw conclusions about where and how blue diamonds form and to chart the movement of elements within the earth.

This is not the first time the researcher, whose work focuses on diamond geology, has been published outside of the jewelry industry.

Smith was the lead author of a study that appeared in Science magazine in January 2017 on the origins of diamonds of exceptional size and quality.

His most recent work dovetails nicely with his previous paper, as both involved studying diamonds to answer broader questions about the history of Earth.

Smith will present the findings from both studies at the upcoming GIA Symposium, which is scheduled to take place in October in Carlsbad.

For now, though, you can learn more about Smith’s revelations about the origins of blue diamonds in the interview below, which has been edited for length and clarity. 
National Jeweler: Let’s start with a more general question. Obviously, everyone in the trade knows about blue diamonds. There’s the Hope Diamond, and we see blue diamonds go for millions at jewelry auctions. But can you say in scientific terms how rare blue diamonds are compared to colorless diamonds and even pinks and yellows?

Evan Smith: This is a typical question because people often say, “They’re very rare; there are very few of them,” but it’s hard to find a number.

Very few people have been able to quantify it because to quantify this small number you really need to take a survey of millions of diamonds before you come up with a number that really means much of anything.

In the Nature article, I gave an estimate of 0.02 percent of mined diamonds being these Type IIb, these boron-bearing diamonds that are quite often blue. This is the best estimate we have for natural diamonds, so it is a very small proportion.

NJ: For sure. It’s rare to find these blues, and it’s even rarer to find them in large sizes, which is why we see bigger blue diamonds set records at auction.

ES: That’s precisely it. You could say something similar with the saturation of the color. Sometimes it’s very pale blue that’s barely noticeable but to have a large diamond that has a very pronounced blue color is exceedingly rare.

A 0.03-carat blue boron-bearing diamond examined as part of the study. The dark inclusions seen here are composed of a mineral called ferropericlase. (Evan M. Smith © GIA)
A 0.03-carat blue boron-bearing diamond examined as part of the study. The dark inclusions seen here are composed of a mineral called ferropericlase. (Evan M. Smith © GIA)

NJ: Let’s get into this study a bit. The article mentions that blue diamonds originate from depths reaching 410 miles. Are they forming deeper in the Earth than white, pink or yellow diamonds?

ES: This is a good question. The big finding from this study is the extreme depths at which they (blue diamonds) form. It’s maybe four times deeper than most other kinds of diamonds.

But it’s important to clarify that the blue color and the boron in these diamonds is not a direct result of depth. It’s not as if any time you form a diamonds very, very deep it’s going to be blue.

A better explanation would be that this is sort of a different recipe by which diamonds form; it’s like we are recognizing another process the Earth has to make diamonds, and we know there are multiple slightly different ways that diamonds can form.

We know, in general, that they come from very deep in the Earth, from the Earth’s mantle. Most gem diamonds form at a depth of between 150 and 200 kilometers (93 to 124 miles) in this part of the mantle that we call the continental plate.

Then there are some other kinds of diamonds that come from below that environment. The term that’s used to describe those diamonds is “superdeep,” or sublithospheric.

What we’ve recognized in this study is that these blue boron-bearing diamonds are actually part of this superdeep story—they form in a slightly different way and they form at really extreme depths.

Now the fact that they come from this extreme depth doesn’t immediately explain where the boron comes from; this is still a big question. But we have a really good hypothesis about that now.

One finding from this study was the extreme depth information. Another finding from this study was recognizing that the rocks surrounding the diamond when it was growing, sort of the host rock of this diamond birthplace, those rocks are oceanic rocks. They used to be at the earth’s surface; they used to be the oceanic tectonic plate.

Those rocks have sunken by the process of subduction; they’ve been dragged down deep into the Earth. And now these rocks that once were at the surface, making up the ocean floor, these rocks are now at a depth of 410 miles or deeper.

NJ: I always knew that blue diamonds were rare. I never knew that they actually formed deeper in the Earth than other natural colored diamonds.

ES: Nobody did. Prior to this study, there had been no single identification of any inclusion in a boron-bearing diamond, and we had no idea where they form or how they might be getting the boron that they contain.

This cross-section illustration by Evan Smith shows scientists’ hypotheses on how boron moved from the floor of the ocean, where it was chemically bound to rocks, to the Earth’s lower mantle, some 660 kilometers (410 miles) down. Boron is what makes blue diamonds blue. (Illustration by Evan M. Smith © GIA)
This cross-section illustration by Evan Smith shows scientists’ hypotheses on how boron moved from the floor of the ocean, where it was chemically bound to rocks, to the Earth’s lower mantle, some 660 kilometers (410 miles) down. Boron is what makes blue diamonds blue. (Illustration by Evan M. Smith © GIA)

NJ: When we are talking about the rocks surrounding the blue diamonds being the ancient ocean floor, how long ago are we talking? More than 500 million years?

ES: Most likely that’s what we are talking about.

We know that is certainly the case for blue diamonds that are from the Cullinan Mine in South Africa, for instance. A large portion of the blue diamonds in the market right now are coming from this mine.

We know the rocks at that mine are older than a billion years, so immediately it means the diamonds must have grown even farther back in time. So, in that case, the ancient ocean floor we are talking about is in excess of a billion years old.

NJ: The article also mentions the mineral inclusions in the blue diamonds you studied. Can you tell us more about these inclusions and how they helped form your hypotheses?

ES: These are minerals that are a little bit different from more common examples of mineral inclusions like olivine or garnet. These are minerals we don’t tend to see at the surface of the Earth; they’re not familiar.

The most common thing I was finding was a calcium silicate phase that would have once been in a very tightly packed crystal structure called perovskite. Calcium silicate perovskite is the most common thing we were finding.

There are a number of different silicate minerals that are exactly what you would expect to find if you took the sort of the ocean plate and increased the temperature and pressure to lower mantle conditions.

The minerals we were seeing are things we know only really exist deep in the Earth.

“If you’re looking at the Hope Diamond, imagine that those little boron atoms that are giving it this color, that they might have actually been floating around the ocean at one point,” said Evan Smith, the lead author on a new article about blue diamonds that’s on the cover of Nature magazine. (Photo by Robert Weldon © GIA. Courtesy of Smithsonian Institution)
“If you’re looking at the Hope Diamond, imagine that those little boron atoms that are giving it this color, that they might have actually been floating around the ocean at one point,” said Evan Smith, the lead author on a new article about blue diamonds that’s on the cover of Nature magazine. (Photo by Robert Weldon © GIA. Courtesy of Smithsonian Institution)

NJ: Why are these revelations about blue diamonds important?

ES: The reason why it’s in (the scientific journal) Nature is because it touches on a very big-picture type of question, and that is: How can the earth take material from the surface and transport them inside the Earth, sort of bring them into the earth’s interior?

The biggest question is surrounding water. We know that ocean rocks interact with the ocean, and it’s of great interest in Earth science to figure out if any of his ocean water, and other elements inside that environment at the surface, if any of that material can be transported to the earth’s interior.

It’s kind of surprising that blue diamonds have something to say about this question because immediately you don’t see any kind of connection. It’s kind of surprising that this big-picture story comes out of looking at blue diamonds.

NJ: Is there anything else from this study that’s important for readers to know?

ES: I would say there are three big findings from this study, and we didn’t really develop the third finding in full. 

The first one is the depth information. 

The second is that the rocks they (blue diamonds) are forming in look like they are oceanic rocks. 

But the third thing, using that as an explanation for where this boron came from, is that the boron probably came from the ocean. Now that’s a hypothesis at this point, but it really seems like it’s the most likely explanation. 

The boron started out in the ocean, and it was sort of chemically attached to the rocks on the ocean floor. Then these rocks were carried deep into the Earth and, in special circumstances, it looks like that boron can actually hitch a ride all the way down to the lower mantle. 

This is the part that makes it interesting for the broader scientific community, showing that you’ve got a real pathway here to get boron and, by proxy water, from the surface down deep into the Earth.

It adds another layer of complexity. If you’re looking at the Hope Diamond, imagine that those little boron atoms that are giving it this color, that they might have actually been floating around the ocean at one point.
Michelle Graffis the editor-in-chief at National Jeweler, directing the publication’s coverage both online and in print.

The Latest

Exterior of Marissa Collections’ new store in Nantucket, Massachusetts
IndependentsJun 25, 2025
Marissa Collections Opens in Nantucket as Legal Fight Continues

The Vault’s Katherine Jetter is accusing the retailer of using info she shared for a potential partnership to move into Nantucket.

Counterfeit Cartier “Juste Un Clou” bracelet
CrimeJun 25, 2025
Customs Nabs Another Big Shipment of Fake Cartier, Van Cleef Jewelry

Agents seized 2,193 pieces, a mix of counterfeit Cartier “Love” and “Juste Un Clou” bracelets, and Van Cleef & Arpels’ “Alhambra” design.

Karine Choudhrie Big Splash Circus Starfish and Lantern Fish
CollectionsJun 25, 2025
Splash into Karina Choudhrie’s Collection of Underwater Circus Performers

The designer brought her children’s book, “The Big Splash Circus,” to life through a collection of playful fine jewelry characters.

an instructor and a student in a bench jewelry classroom
Brought to you by
Investing in the Next Generation of Bench Jewelers

The Seymour & Evelyn Holtzman Bench Scholarship from Jewelers of America returns for a second year.

Jewelers of America
Events & AwardsJun 25, 2025
JA Announces Impact Initiative Fund Recipients

The trade association has chosen the recipients of the funding initiative it formed to foster the growth and sustainability of the industry.

Weekly QuizJun 20, 2025
This Week’s Quiz
Test your jewelry news knowledge by answering these questions.
Take the Quiz
John Dyer Montana Sun Sapphire
SourcingJun 25, 2025
2025 AGTA Spectrum Awards Open for Entries

The organization has also announced this year’s slate of judges.

Lori Tucker
IndependentsJun 24, 2025
Colorado Bench Jeweler Celebrates 50 Years With Local Retailer

Lori Tucker started at Williams Jewelers when she was 18 years old.

Jewelers of America logo with meetup, State of the Majors, giveaway and massages
Brought to you by
Jewelers of America is Headed to Las Vegas for JCK 2025

The countdown is on for the JCK Las Vegas Show and JA is pulling out all the stops.

“Marvel | Citizen Zenshin” watch for the new The Fantastic Four movie
WatchesJun 24, 2025
Citizen’s New ‘Fantastic Four’ Watch Is Literally Super

The “Marvel | Citizen Zenshin” watch is crafted in Super Titanium and has subtle nods to all four “Fantastic Four” superheroes on the dial.

XO Tacori diamond ring
MajorsJun 24, 2025
Tacori, QVC to Launch Exclusive Lab-Grown Diamond Jewelry Collection

The “XO Tacori” collection was designed to blend luxury and accessible pricing.

Pritesh Patel
GradingJun 23, 2025
GIA Names New President and CEO

Pritesh Patel, the lab’s chief operating officer, will take over as president and CEO of GIA.

Graphic for Las Vegas recap episode of “My Next Question”
Recorded WebinarsJun 23, 2025
Watch: Top Trends at Couture, JCK Las Vegas 2025

National Jeweler and Jewelers of America discuss the standout jewelry trends and biggest news to emerge from the shows this year.

Luanda Accord
SourcingJun 23, 2025
Diamond Producers, Organizations to Kick in Money to Promote Natural Diamonds

Signatories to the “Luanda Accord” committed to allocating 1 percent of annual diamond revenue to the Natural Diamond Council.

Penny Preville, Maggie Hess, Stella Song, and Benjamin King
Events & AwardsJun 23, 2025
Jose Hess Design Awards Celebrate 6 Jewelry Designers

The winning designs captured the “Radiance” theme.

24th Gem Awards Show Logo
Events & AwardsJun 23, 2025
Gem Awards Now Accepting Nominations for 2026

Nominations in the categories of Jewelry Design, Media Excellence, and Retail Innovation will be accepted through July 30.

Single Stone Bryn Ring and Grace Lee Marquise Demi Demi Ring
TrendsJun 20, 2025
Dua Lipa Stays On-Trend With Chunky Engagement Ring

The singer’s ring ticks off many bridal trends, with a thick band, half-bezel setting, and solitaire diamond.

Yvonne Léon Python Gold Bracelet
TrendsJun 20, 2025
Piece of the Week: Yvonne Léon’s ‘Python Gold’ Bracelet

The bracelet references vintage high jewelry and snake symbolism as a playful piece where a python’s head becomes a working belt buckle.

Stock image of handcuffs
CrimeJun 18, 2025
7 Men Indicted in $100M Brinks Jewelry Heist

The heist happened in Lebec, California, in 2022 when a Brinks truck was transporting goods from one show in California to another.

Marie-Thérèse Pink diamond and Blue Belle sapphire necklace
AuctionsJun 18, 2025
Historic ‘Marie-Thérèse Pink’ Diamond Fetches $14M at Christie’s

The 10-carat fancy purple-pink diamond with potential links to Marie Antoinette headlined the white-glove jewelry auction this week. 

Gresham grasshopper ring
AuctionsJun 18, 2025
16th-Century ‘Gresham Grasshopper’ Ring Sells for $56K

The historic signet ring exceeded its estimate at Noonans Mayfair’s jewelry auction this week.

Kirk Kara fine jewelry
CollectionsJun 18, 2025
Kirk Kara Celebrates 135 Years With New Jewels

To mark the milestone, the brand is introducing new non-bridal fine jewelry designs for the first time in two decades.

Gemfields 36 Carat Ruby
SourcingJun 18, 2025
Gemfields Sells 36-Carat Rough Ruby

The gemstone is the third most valuable ruby to come out of the Montepuez mine, Gemfields said.

Alex Brown
TechnologyJun 18, 2025
Alex Brown Named President of Smithee Group

Founder and longtime CEO Ben Smithee will stay with the agency, transitioning into the role of founding partner and strategic advisor.

Jade Ruzzo Gloria Collar
EditorsJun 17, 2025
The Best New Jewelry from Couture 2025, Part 1

Associate Editor Natalie Francisco shares 20 of her favorite pieces from the jewelry collections that debuted at Couture.

Jewelry industry author, speaker, and sales expert Peter Smith
ColumnistsJun 17, 2025
Peter Smith: Is Your Comp Plan a Hiring Hindrance?

If you want to attract good salespeople and generate a stream of “sleeping money” for your jewelry store, then you are going to have to pay.

Selection of jewelry from Sotheby’s New York High Jewelry sale
AuctionsJun 17, 2025
Colored Gemstones, Signed Jewels Shine in Sotheby’s High Jewelry Sale

The top lot was a colorless Graff diamond, followed by a Burmese ruby necklace by Marcus & Co.

Amanda Gizzi, Jewelers of America’s SVP of corporate affairs
MajorsJun 17, 2025
Amanda Gizzi Gets a Promotion at JA

Gizzi, who has been in the industry since 2001, is now Jewelers of America’s senior vice president of corporate affairs.

×

This site uses cookies to give you the best online experience. By continuing to use & browse this site, we assume you agree to our Privacy Policy