Editors

Going Deep: What the GIA Just Learned About Blue Diamonds

EditorsAug 06, 2018

Going Deep: What the GIA Just Learned About Blue Diamonds

They don’t form in the same layer of the Earth as other diamonds.

20180806_Blue-diamond-header.jpg
GIA research scientist Evan Smith just completed a two-year research study on blue diamonds with inclusions that sheds lights on how and where these rare stones form. This is one of the gems examined as part of the study; it is 3.81 carats and 1.26 cm long. (Photo credit: Robison McMurtry © GIA)
It’s widely known that blue diamonds are among the rarest of gemstones.

But scientists had no idea where exactly in the earth they formed or how they picked up the boron that makes them that color—until now.

Evan Smith, a research scientist at the Gemological Institute of America, was the lead author of an article that landed on the cover of the latest edition of the scientific journal Nature.

The article details the findings of a study he and other GIA researchers recently completed on inclusions in blue diamonds.

For this study, Smith examined 46 stones submitted to the GIA for grading over a two-year period.

“People”—meaning earth scientists, who look to diamonds to help draw hypotheses about Earth’s history—“have wanted to study these boron-bearing diamonds for years, but it’s difficult because they are rare and they’re also mostly inclusion-free,” he said. 

“So if you do manage to borrow or purchase some of these blue diamonds, it’s difficult to learn much because they do not have inclusions.

(An article on blue diamonds in the Winter 1998 issue of Gems & Gemology authored by John King, et al states that in a study of more than 400 blue diamonds, researchers examined a subset of 62 stones specifically for inclusions. Of those, only about 15 had solid inclusions.)

Being at GIA, though, gave Smith access to a steady stream of boron-bearing diamonds with inclusions.

He said the graders would pick out stones that fit the profile and let him “borrow” them for a few hours. He would then use a non-destructive technique called Raman spectroscopy to identify what mineral was trapped inside the inclusions.

Over time, Smith assembled a list of inclusions that allowed him to draw conclusions about where and how blue diamonds form and to chart the movement of elements within the earth.

This is not the first time the researcher, whose work focuses on diamond geology, has been published outside of the jewelry industry.

Smith was the lead author of a study that appeared in Science magazine in January 2017 on the origins of diamonds of exceptional size and quality.

His most recent work dovetails nicely with his previous paper, as both involved studying diamonds to answer broader questions about the history of Earth.

Smith will present the findings from both studies at the upcoming GIA Symposium, which is scheduled to take place in October in Carlsbad.

For now, though, you can learn more about Smith’s revelations about the origins of blue diamonds in the interview below, which has been edited for length and clarity. 
National Jeweler: Let’s start with a more general question. Obviously, everyone in the trade knows about blue diamonds. There’s the Hope Diamond, and we see blue diamonds go for millions at jewelry auctions. But can you say in scientific terms how rare blue diamonds are compared to colorless diamonds and even pinks and yellows?

Evan Smith: This is a typical question because people often say, “They’re very rare; there are very few of them,” but it’s hard to find a number.

Very few people have been able to quantify it because to quantify this small number you really need to take a survey of millions of diamonds before you come up with a number that really means much of anything.

In the Nature article, I gave an estimate of 0.02 percent of mined diamonds being these Type IIb, these boron-bearing diamonds that are quite often blue. This is the best estimate we have for natural diamonds, so it is a very small proportion.

NJ: For sure. It’s rare to find these blues, and it’s even rarer to find them in large sizes, which is why we see bigger blue diamonds set records at auction.

ES: That’s precisely it. You could say something similar with the saturation of the color. Sometimes it’s very pale blue that’s barely noticeable but to have a large diamond that has a very pronounced blue color is exceedingly rare.

A 0.03-carat blue boron-bearing diamond examined as part of the study. The dark inclusions seen here are composed of a mineral called ferropericlase. (Evan M. Smith © GIA)
A 0.03-carat blue boron-bearing diamond examined as part of the study. The dark inclusions seen here are composed of a mineral called ferropericlase. (Evan M. Smith © GIA)

NJ: Let’s get into this study a bit. The article mentions that blue diamonds originate from depths reaching 410 miles. Are they forming deeper in the Earth than white, pink or yellow diamonds?

ES: This is a good question. The big finding from this study is the extreme depths at which they (blue diamonds) form. It’s maybe four times deeper than most other kinds of diamonds.

But it’s important to clarify that the blue color and the boron in these diamonds is not a direct result of depth. It’s not as if any time you form a diamonds very, very deep it’s going to be blue.

A better explanation would be that this is sort of a different recipe by which diamonds form; it’s like we are recognizing another process the Earth has to make diamonds, and we know there are multiple slightly different ways that diamonds can form.

We know, in general, that they come from very deep in the Earth, from the Earth’s mantle. Most gem diamonds form at a depth of between 150 and 200 kilometers (93 to 124 miles) in this part of the mantle that we call the continental plate.

Then there are some other kinds of diamonds that come from below that environment. The term that’s used to describe those diamonds is “superdeep,” or sublithospheric.

What we’ve recognized in this study is that these blue boron-bearing diamonds are actually part of this superdeep story—they form in a slightly different way and they form at really extreme depths.

Now the fact that they come from this extreme depth doesn’t immediately explain where the boron comes from; this is still a big question. But we have a really good hypothesis about that now.

One finding from this study was the extreme depth information. Another finding from this study was recognizing that the rocks surrounding the diamond when it was growing, sort of the host rock of this diamond birthplace, those rocks are oceanic rocks. They used to be at the earth’s surface; they used to be the oceanic tectonic plate.

Those rocks have sunken by the process of subduction; they’ve been dragged down deep into the Earth. And now these rocks that once were at the surface, making up the ocean floor, these rocks are now at a depth of 410 miles or deeper.

NJ: I always knew that blue diamonds were rare. I never knew that they actually formed deeper in the Earth than other natural colored diamonds.

ES: Nobody did. Prior to this study, there had been no single identification of any inclusion in a boron-bearing diamond, and we had no idea where they form or how they might be getting the boron that they contain.

This cross-section illustration by Evan Smith shows scientists’ hypotheses on how boron moved from the floor of the ocean, where it was chemically bound to rocks, to the Earth’s lower mantle, some 660 kilometers (410 miles) down. Boron is what makes blue diamonds blue. (Illustration by Evan M. Smith © GIA)
This cross-section illustration by Evan Smith shows scientists’ hypotheses on how boron moved from the floor of the ocean, where it was chemically bound to rocks, to the Earth’s lower mantle, some 660 kilometers (410 miles) down. Boron is what makes blue diamonds blue. (Illustration by Evan M. Smith © GIA)

NJ: When we are talking about the rocks surrounding the blue diamonds being the ancient ocean floor, how long ago are we talking? More than 500 million years?

ES: Most likely that’s what we are talking about.

We know that is certainly the case for blue diamonds that are from the Cullinan Mine in South Africa, for instance. A large portion of the blue diamonds in the market right now are coming from this mine.

We know the rocks at that mine are older than a billion years, so immediately it means the diamonds must have grown even farther back in time. So, in that case, the ancient ocean floor we are talking about is in excess of a billion years old.

NJ: The article also mentions the mineral inclusions in the blue diamonds you studied. Can you tell us more about these inclusions and how they helped form your hypotheses?

ES: These are minerals that are a little bit different from more common examples of mineral inclusions like olivine or garnet. These are minerals we don’t tend to see at the surface of the Earth; they’re not familiar.

The most common thing I was finding was a calcium silicate phase that would have once been in a very tightly packed crystal structure called perovskite. Calcium silicate perovskite is the most common thing we were finding.

There are a number of different silicate minerals that are exactly what you would expect to find if you took the sort of the ocean plate and increased the temperature and pressure to lower mantle conditions.

The minerals we were seeing are things we know only really exist deep in the Earth.

“If you’re looking at the Hope Diamond, imagine that those little boron atoms that are giving it this color, that they might have actually been floating around the ocean at one point,” said Evan Smith, the lead author on a new article about blue diamonds that’s on the cover of Nature magazine. (Photo by Robert Weldon © GIA. Courtesy of Smithsonian Institution)
“If you’re looking at the Hope Diamond, imagine that those little boron atoms that are giving it this color, that they might have actually been floating around the ocean at one point,” said Evan Smith, the lead author on a new article about blue diamonds that’s on the cover of Nature magazine. (Photo by Robert Weldon © GIA. Courtesy of Smithsonian Institution)

NJ: Why are these revelations about blue diamonds important?

ES: The reason why it’s in (the scientific journal) Nature is because it touches on a very big-picture type of question, and that is: How can the earth take material from the surface and transport them inside the Earth, sort of bring them into the earth’s interior?

The biggest question is surrounding water. We know that ocean rocks interact with the ocean, and it’s of great interest in Earth science to figure out if any of his ocean water, and other elements inside that environment at the surface, if any of that material can be transported to the earth’s interior.

It’s kind of surprising that blue diamonds have something to say about this question because immediately you don’t see any kind of connection. It’s kind of surprising that this big-picture story comes out of looking at blue diamonds.

NJ: Is there anything else from this study that’s important for readers to know?

ES: I would say there are three big findings from this study, and we didn’t really develop the third finding in full. 

The first one is the depth information. 

The second is that the rocks they (blue diamonds) are forming in look like they are oceanic rocks. 

But the third thing, using that as an explanation for where this boron came from, is that the boron probably came from the ocean. Now that’s a hypothesis at this point, but it really seems like it’s the most likely explanation. 

The boron started out in the ocean, and it was sort of chemically attached to the rocks on the ocean floor. Then these rocks were carried deep into the Earth and, in special circumstances, it looks like that boron can actually hitch a ride all the way down to the lower mantle. 

This is the part that makes it interesting for the broader scientific community, showing that you’ve got a real pathway here to get boron and, by proxy water, from the surface down deep into the Earth.

It adds another layer of complexity. If you’re looking at the Hope Diamond, imagine that those little boron atoms that are giving it this color, that they might have actually been floating around the ocean at one point.
Michelle Graffis the editor-in-chief at National Jeweler, directing the publication’s coverage both online and in print.

The Latest

Movado Connect 2.0 watches
FinancialsMay 30, 2025
Movado’s Q1 Sales Slip Amid ‘Challenging’ Retail Environment

The company plans to raise the prices of select watches to offset the impact of tariffs.

Zoë Chicco Bracelets
Policies & IssuesMay 30, 2025
Tariffs & Designers: Navigating Pricing in an Unstable Environment

Between tariffs and the sky-high cost of gold, designers enter this year’s Las Vegas shows with a lot of questions and few answers.

Renato Cipullo Hematite Blaze Necklace
CollectionsMay 30, 2025
Piece of the Week: Renato Cipullo’s ‘Hematite Blaze’ Necklace

Designed by founder Renato and his daughter Serena Cipullo, it showcases a flame motif representing unity and the power of gathering.

DCA-student-cert-NJ1872x1052-2.png
Brought to you by
The True Power Behind the Counter: Why Sales Associates Are the Heart of the Jewelry Business

When investing in your jewelry business, it's important not to overlook the most crucial element of success: the sales associates.

Stock image of shipping containers
Policies & IssuesMay 30, 2025
Trade Court Declares Trump’s Tariffs Invalid

However, the tariffs remain in effect in the short term, as an appeals court has stayed the U.S. Court of International Trade’s decision.

Weekly QuizMay 30, 2025
This Week’s Quiz
Test your jewelry news knowledge by answering these questions.
Take the Quiz
Britney Spears
CollectionsMay 29, 2025
Britney Spears Files Trademark for New Jewelry Line

The pop icon is one step closer to launching her “B Tiny” jewelry collection, a collection she first began posting about last fall.

Inoveo Platinum Grain image.jpg
Supplier BulletinMay 29, 2025
Inoveo Platinum Grain, Exclusively Distributed by Stuller

Sponsored by Stuller

Article Image 1.png
Brought to you by
Clienteling Isn’t a Buzzword. It’s an Essential Business Model.

More shoppers are walking out without buying. Here’s how smart jewelers can bring them back—and the tool they need to do it right.

Grizzly Mining Pilala emerald
SourcingMay 29, 2025
Grizzly Auctions 6,620-Carat Emerald

It was featured in the miner’s latest sale, which brought in $24.8 million.

GemFind Logo
TechnologyMay 29, 2025
GemFind Launches AI Product Description Software

GemText AI uses artificial intelligence to generate tailored product titles, descriptions, and tags with jewelry-specific language.

Graff Fontainebleau Las Vegas
MajorsMay 28, 2025
Graff Unveils New Las Vegas Flagship

The 3,300-square foot location is the jeweler's largest store in North America.

Kim Kardashian
CrimeMay 28, 2025
8 Convicted in Kim Kardashian Jewelry Heist Trial

Aging and with myriad health issues, none will serve time for their roles in robbing the billionaire celebrity at gunpoint in 2016.

New York Liberty 2024 WNBA Championship Ring
CollectionsMay 28, 2025
NY Liberty’s 2024 Championship Rings Honor Historic Win

The WNBA team received rings imbued with meaning, from leaf motifs and its Liberty torch to the number of diamonds used.

Jewelers Board of Trade logo
MajorsMay 28, 2025
Andrew Rickard Named JBT President

A longtime executive at RDI Diamonds, Rickard has served on the JBT board for the past five years.

Logos for Manufacturing Jewelers & Suppliers of America and Jewelers of America
MajorsMay 27, 2025
MJSA to Become Part of Jewelers of America

The two organizations have signed an affiliation agreement that’s expected to be finalized in the coming weeks.

Al Capone Pocket Watch
AuctionsMay 27, 2025
Al Capone’s Patek Philippe Pocket Watch Back Up for Auction

The platinum and diamond watch is part of Sotheby’s upcoming Important Watches sale.

Kat Florence Lumina
AuctionsMay 27, 2025
182-Carat Paraíba-Type Tourmaline Sells for $487K

Recovered in Mozambique, “The Kat Florence Lumina” was part of Bonhams’ Hong Kong jewelry auction held last week.

Mark Henry Gumdrop Bypass Ring
TrendsMay 27, 2025
Amanda’s Style File: Candy-Colored Gemstones

Get a taste of the delicious candy-like gemstones in this Amanda’s Style File.

Stock image of police cars with their lights on
CrimeMay 23, 2025
JSA Shares Holiday Weekend Security Tips Amid Spike in Burglaries

JSA’s Scott Guginsky provided a list of nine security measures jewelers should observe while locking up for the long weekend.

Bliss Lau Bright Ring
CollectionsMay 23, 2025
Piece of the Week: Bliss Lau’s ‘Bright’ Ring

From Lau’s “Love of a Kind” series, the engagement ring was inspired by the moon and holds a different meaning depending on how it is worn.

GIA pearl report
GradingMay 23, 2025
GIA Updates Pearl Classification System

The lab has adjusted the scale it uses for nacre grading.

GCALbySarine Diamond Journey Certificate_1872x1052.jpg
Supplier BulletinMay 22, 2025
How to Put Natural Diamonds Back in the Spotlight

Sponsored by GCAL by Sarine

The late West Virginia jeweler David Ettinger
CrimeMay 22, 2025
NY Jeweler Sentenced in Shoving Death of Colleague at IJO Show

David Walton will serve three years’ probation after an incident in a hotel bar led to the death of West Virginia jeweler David Ettinger.

Watches of Switzerland store in Mall of America
FinancialsMay 22, 2025
Watches of Switzerland’s Full-Year U.S. Sales Climb 14%

The retailer also provided an update on how the tariffs situation in the U.S. is affecting its business.

Jorge Adeler, Wendy Adeler, Valentina Adeler
IndependentsMay 22, 2025
Adeler Jewelers Celebrates 50 Years

The family-owned jeweler in Great Falls, Virginia, will be celebrating its golden jubilee with a year’s worth of events.

Jose Hess Design Awards 2025 Trophy
Events & AwardsMay 22, 2025
Jose Hess Design Awards Announce Judges

The nonprofit elected five judges who will decide the winners of its design competition.

MJSA 2025-2026 Buyer’s Guide
MajorsMay 22, 2025
MJSA Releases 2025-2026 Buyer’s Guide

This year’s edition includes articles on the favorite tools of notable designers, evaluating when to outsource production, and more.

×

This site uses cookies to give you the best online experience. By continuing to use & browse this site, we assume you agree to our Privacy Policy